Estimating membrane voltage correlations from extracellular spike trains.

نویسندگان

  • Jessy D Dorn
  • Dario L Ringach
چکیده

The cross-correlation coefficient between neural spike trains is a commonly used tool in the study of neural interactions. Two well-known complications that arise in its interpretation are 1) modulations in the correlation coefficient may result solely from changes in the mean firing rate of the cells and 2) the mean firing rates of the neurons impose upper and lower bounds on the correlation coefficient whose absolute values differ by an order of magnitude or more. Here, we propose a model-based approach to the interpretation of spike train correlations that circumvents these problems. The basic idea of our proposal is to estimate the cross-correlation coefficient between the membrane voltages of two cells from their extracellular spike trains and use the resulting value as the degree of correlation (or association) of neural activity. This is done in the context of a model that assumes the membrane voltages of the cells have a joint normal distribution and spikes are generated by a simple thresholding operation. We show that, under these assumptions, the estimation of the correlation coefficient between the membrane voltages reduces to the calculation of a tetrachoric correlation coefficient (a measure of association in nominal data introduced by Karl Pearson) on a contingency table calculated from the spike data. Simulations of conductance-based leaky integrate-and-fire neurons indicate that, despite its simplicity, the technique yields very good estimates of the intracellular membrane voltage correlation from the extracellular spike trains in biologically realistic models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Model-Based Spike Sorting Algorithm for Removing Correlation Artifacts in Multi-Neuron Recordings

We examine the problem of estimating the spike trains of multiple neurons from voltage traces recorded on one or more extracellular electrodes. Traditional spike-sorting methods rely on thresholding or clustering of recorded signals to identify spikes. While these methods can detect a large fraction of the spikes from a recording, they generally fail to identify synchronous or near-synchronous ...

متن کامل

3 Intracellular recording

Intracellular recording is the measurement of voltage or current across the membrane of a cell. It typically involves an electrode inserted in the cell and a reference electrode outside the cell. The electrodes are connected to an amplifier to measure the membrane potential, possibly in response to a current injected through the intracellular electrode (current clamp), or the current flowing th...

متن کامل

Stimulus-Dependent Correlations in Threshold-Crossing Spiking Neurons

We consider a threshold-crossing spiking process as a simple model for the activity within a population of neurons. Assuming that these neurons are driven by a common fluctuating input with gaussian statistics, we evaluate the cross-correlation of spike trains in pairs of model neurons with different thresholds. This correlation function tends to be asymmetric in time, indicating a preference f...

متن کامل

Spiking Neurons: Is coincidence-factor enough for comparing responses with fluctuating membrane voltage?

Similarity between two spike trains is generally estimated using a ‘coincidence factor’. This factor relies on counting coincidences of firing-times for spikes in a given time window. However, in cases where there are significant fluctuations in membrane voltages, this uni-dimensional view is not sufficient. Results in this paper show that a two-dimensional approach taking both firing-time and ...

متن کامل

Innovative Methodology Removal of Spurious Correlations Between Spikes and Local Field Potentials

Zanos TP, Mineault PJ, Pack CC. Removal of spurious correlations between spikes and local field potentials. J Neurophysiol 105: 474–486, 2011. First published November 10, 2010; doi:10.1152/jn.00642.2010. Single neurons carry out important sensory and motor functions related to the larger networks in which they are embedded. Understanding the relationships between single-neuron spiking and netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 89 4  شماره 

صفحات  -

تاریخ انتشار 2003